Harnessing Simulated Datasets with Graphs: **Thesis Dissertation Proposal**

Henrique Teles Maia

LUMBIA UNIVERSITY

Modeling Realistic Behavior

COLUMBIA COMPUTER GRAPHICS GROUP N

DeepMimic [Peng et al. 2018] Using Deep Convolutional Neural Networks [Laine et al. 2017]

Simulated data

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization [Peng et al. 2018]

Dynamic Terrain Traversal Skills Using Reinforcement Learning [Peng et al. 2015]

Combinatorial Explosion

Liquid Splash Modeling with Neural Networks [Um et al. 2018]

Graphs

Methodology

Generate a specialized dataset Identify combinatorial challenges Overlay a graph structure Leverage graph algorithms

Roadmap

Additive Manufacturing

COLUMBIA COMPUTER GRAPHICS GROUP

Side-channel Security

Physics-based Contact

LayerCode: Optical Barcodes for 3D Printed Shapes

with Dingzeyu Li, Yuan Yang, Changxi Zheng

UMBIA UNIVERSITY IN THE CITY OF NEW YORK

[SIGGRAPH 2019]

2D Tagging

3D Encoding

Acoustic Barcodes [Harrison et al. 2012]

COLUMBIA COMPUTER GRAPHICS GROUP Metadata Embedding

Applications:

subsurface

Infrastructs [Willis and Wilson 2013]

AirCode [Li et al. 2017]

3D Shapes: Hard to Tag

CUrvy

thin features

shells

holes

Synthetic Shape Exploration

Cost & Time

Layer by Layer Fabrication

Encoding Global Lengths

Encoding Global Lengths

Encoding Local Ratios

multi-**linear scan**

Columbia Computer Graphics Group

non-linear scan

Computing Robust Ratios

non-linear scan

graph-based approach

Decoding: graph extraction

Decoding: graph extraction cont.

Decoding

$a_n \not\approx a_{n+1} \Rightarrow 1$, $a_{n+1} \approx a_{n+2} \Rightarrow 0$

LayerCode Graphs

Virtual Evaluation on Thingi10K

Virtual Evaluation of Decoding Database

Virtual Evaluation of Views

COLUMBIA COMPUTER GRAPHICS GROUP

on our virtual database

Y

Х

Physical Hyperlinks

COLUMBIA COMPUTER GRAPHICS GROUP

Sample Query Information:

#Vertices	:	2450			
Euler	:	2			
Genus	:	1			
Closed	:	True			
Solid	:	False			
Edge manif	٥l	ld	:	True	
Duplicated	f	faces	:	False	

can we extract more than just the bits?

What about 3D info?

structured light projections are baked-in!

[Lanman & Taubin 2009] [Lanman et al. 2007] [Zhang et al. 1999] [Inokuchi et al. 1984]

projector

Free Depth Information

single image input

COLUMBIA COMPUTER GRAPHICS GROUP

recovered 3D layers

Ubiquitous tagging

COLUMBIA COMPUTER GRAPHICS GROUP

LayerCode tags objects on the inside as well

Virtual Repair

Overview

COLUMBIA COMPUTER GRAPHICS GROUP

Methodology

Generate large shape dataset

Identify shape invariant ratios

- Distill complexities into graphs
- Uniformly traverse graphs to decode

Sample	Query	Information:
	•	

#Vertices	:	2450		
Euler	:	2		
Genus	:	1		
Closed	•	True		
Solid	•	False		
Edge manif	01	Ld	:	True
Duplicated	l f	faces	:	False

Applications

Conclusion

✓ Structural Preservat

✓ Depth Estimation

✓ Rough & Curvy Surface

✓ Thin Shells & Rods & Holes

✓ Accessible D

- -

Roadmap

Additive Manufacturing

COLUMBIA COMPUTER GRAPHICS GROUP

Side-channel Security

Physics-based Contact
Can one hear the shape of a neural network?: **Snooping the GPU via Magnetic Side Channel**

with Chang Xiao, Dingzeyu Li, Eitan Grinspun, Changxi Zheng

IN THE CITY OF NEW YORK

COLUMBIA COMPUTER GRAPHICS GROUP

[USENIX Security 2022]

Neural Supremacy

ImageNet Classification with deep convolutional neural networks [Krizhevsky et al. 2012]

COLUMBIA COMPUTER GRAPHICS GROUP

Security

Learning Deep Policies for Robot Bin Picking by Simulating Robust Grasping Sequences [Mahler & Goldberg 2017]

Incentives

Intellectual Property Theft

Avoiding Charges

Bypassing Filters

Machine Learning \bigcirc GPUs

Physical Backdoor -

GPU Inference Traces

Methodology: -Generate dataset Identify nodes in signal Assemble graphs Optimize for parameters

Target Scope

- OrderType
- **→**Width
- ➡Parameters

Output

Attacker's Capability

Known size input image

Layer-by-Layer Computation

Sensor Setup

Signal Classification

Consistency flow

Optimizing over Graphs

Neural Graphs

Topology Reconstruction

Layer Type	Prec.	Rec.	F1	# samples			Prec.	Rec.	F1	# samples
LSTM	.997	.992	.995	8,704		LSTM	.997	.999	.998	12,186
Conv	.993	.996	.994	447,968		Conv	.985	.989	.987	141,164
Fully-connected	.901	.796	.846	10,783		Fully-connected	.818	.969	.887	9,301
Add	.984	.994	.989	22,714		Add	.962	.941	.951	30,214
BatchNorm	.953	.955	.954	47,440		BatchNorm	.956	.944	.950	48,433
MaxPool	.957	.697	.806	4,045	Precisio	MaxPool	.809	.701	.751	1,190
AvgPool	.371	.760	.499	675	Reca	AvgPool	.927	.874	.900	294
ReLU	.861	.967	.911	28,512	F1 Sco	ReLU	.868	.859	.863	11,425
ELU	.464	.825	.594	2,834 -		ELU	.861	.945	.901	8,311
LeakyReLU	.732	.578	.646	9,410		LeakyReLU	.962	.801	.874	3,338
Sigmoid	.694	.511	.588	8,744		Sigmoid	.462	.801	.585	5,106
Tanh	.773	.557	.648	4,832		Tanh	.928	.384	.543	8,050
Weighted Avg.	.968	.967	.966	-		Weigted Avg.	.945	.945	.945	-

Titan V

COLUMBIA COMPUTER GRAPHICS GROUP

ut

GPU Transferability

	Target GPU						
	GTX-960	MSI-1060	MSI-1070	MSI-1080	EVGA-1080	GTX-1080	
With Holdout	61.3	77.4	83.4	87.1	93.2	93.9	
Full Dataset	96.5	88.6	93.4	91.7	95.8	95.2	

Transfer Attacks

Transfer Attacks

rget Model			
ResNet-101	VGG-11	VGG-16	AlexNet
80.27	47.98	86.64	30.56
82.30	51.42	85.60	32.34
92.95	53.98	83.04	30.55
57.52	60.24	65.50	39.95
54.23	41.60	74.29	29.57
10.19	11.60	10.42	62.70

Applying our Methodology

Methodology -Generate large signal dataset Identify network invariant behavior Distill layer sequences into graphs Optimize estimates to extract model

Roadmap

Additive Manufacturing

COLUMBIA COMPUTER GRAPHICS GROUP

Side-channel Security

Physics-based Contact

Data-Driven Hair Contact: **Resolving Collisions with GraphNets**

with Eitan Grinspun, Changxi Zheng

COLUMBIA COMPUTER GRAPHICS GROUP

[Ongoing research]

Hair Simulation

Towards Faster Hair

Hair-Meshes

Real-Time Hair Mesh Simulation [Wu & Yuksel 2016]

<u></u>

COLUMBIA COMPUTER GRAPHICS GROUP

Adaptive Skinning for Interactive Hair-Solid Simulation [Chai et al. 2016]

Rod-Skinning

Non-linear Elasticity

Adaptive Nonlinearity for Collisions in Complex Rod Assemblies [Kaufman et al. 2014]

Bottleneck - step breakdown

Bottleneck - absolute time

Data Abundance

Unconstrained Configuration

61/2

speed

Approximations are okay! flexibility

Shaping the Inputs

Shaping the Inputs

GraphNets

Algorithm 1 Steps of computation in a full GN block. function GRAPHNETWORK (E, V, \mathbf{u}) for $k \in \{1 \dots N^e\}$ do $\mathbf{e}'_{k} \leftarrow \phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}\right)$ end for for $i \in \{1 \dots N^n\}$ do let $E'_i = \{(\mathbf{e}'_k, r_k, s_k)\}_{r_k=i, k=1:N^e}$ $\mathbf{\bar{e}}'_i \leftarrow \rho^{e \to v} \left(E'_i \right)$ $\mathbf{v}'_i \leftarrow \phi^v \left(\mathbf{\bar{e}}'_i, \mathbf{v}_i, \mathbf{u} \right)$ end for let $V' = \{\mathbf{v}'\}_{i=1:N^v}$ let $E' = \{(\mathbf{e}'_k, r_k, s_k)\}_{k=1:N^e}$ $\mathbf{\bar{e}}' \leftarrow \rho^{e \to u} \left(E' \right)$ $\bar{\mathbf{v}}' \leftarrow \rho^{v \to u} \left(V' \right)$ $\mathbf{u}' \leftarrow \phi^u \left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u} \right)$ return (E', V', \mathbf{u}') end function

> Relational inductive biases, deep learning and graph networks [Battaglia et al. 2018]

COLUMBIA COMPUTER GRAPHICS GROUP

Multi-Graph allows for nodes with self-edges and multi-edge connections

> Attributes stored on nodes & edges as vector embeddings

nodes update by aggregating incident edges

Strands to Graphs

Strands to Graphs

Strands to Graphs

Contact Dual GraphNets

Preliminary Results

Perturbed initial conditions

Next Steps

More complex interactions Larger contact graph Non-straight hair model

Overview

Fits the Methodology:

Generate large contact dataset Identify contact features Map strands & collisions into graphs Train fast feed-forward contact-graphs

COLUMBIA COMPUTER GRAPHICS GROUP

Contributions

→ Fast -Stable → Flexible Model agnostic Paves the way for future hair & ML a novel GraphNet formulation

COLUMBIA COMPUTER GRAPHICS GROUP

Return to Roadmap

LayerCodes

COLUMBIA COMPUTER GRAPHICS GROUP

Neural Snooping

Data-Driven Hair Contact

Timeline

LayerCodes - Fall 2019 Neural Snooping - Fall 2021 Thesis Proposal - Winter 2021/2022 Data-Driven Hair Contact Submission - Spring 2022 Thesis Writing - Spring 2022 Thesis Defense - Summer 2022

COLUMBIA COMPUTER GRAPHICS GROUP

Acknowledgments

advisors

Eitan Grinspun

Changxi Zheng

co-authors

Chang Xiao

Yuan Yang

Raymond Fei

- Oded Stein
- Peter Chen
- Joni Mici
- Mohammed Haroun
- William Miller
- Qingnan Zhou
- Anne Fleming
- Hod Lipson
- **Christopher Batty**
- **David Watkins-Valls**
- Carmine Elvezio

Questions?

COLUMBIA COMPUTER GRAPHICS GROUP

henrique@cs.columbia.edu

