
Harnessing Simulated Datasets with Graphs
Thesis Dissertation Proposal

Columbia University

Henrique Teles Maia

December 31, 2021

Abstract

Physically accurate simulations enable the generation of limitless data from
within meticulously crafted environments. Digital sandboxes allow for col-
lecting observations at-will and in arbitrary scenarios. This is particularly
useful given the ubiquity of data-driven techniques across engineering disci-
plines. These are systems which inform behavior from aggregating over avail-
able samples. Paired together with statistical methods, the ability to syn-
thesize endless data promises to make approaches that benefit from datasets
all the more robust and desirable. However, if not careful, pipelines that
naively aim to measure virtual scenarios can easily be overwhelmed by try-
ing to sample an infinite set of available configurations. Variations observed
across multiple dimensions can quickly lead to a daunting expansion of states,
which must be processed and solved. Therefore we propose to wield graphs in
order to instill structure over captured data, and curb the growth of variables.
The graphs we introduce serve to enforce consistency, localize operators, and
crucially factor out any combinatorial explosion of states. We demonstrate
the effectiveness of this methodology in three distinct areas, each offering
their own challenges and practical constraints. Namely, we observe state-
of-the-art contributions in design for additive manufacturing, side-channel
security threats, and large-scale physics based contact simulations, that are
achieved solely by harnessing simulated datasets with graph algorithms.

Contents

1 Introduction 2
1.1 Methodology . 3
1.2 Roadmap . 4

2 Related Work 5

3 LayerCodes 7
3.1 Method . 8
3.2 Evaluation . 12
3.3 Experiments & Results . 14

4 Neural Snooping 16
4.1 Method . 17
4.2 Evaluation . 21
4.3 Experiments & Results . 21

5 Data-Driven Hair Contact 24
5.1 Method . 25
5.2 Contributions . 26
5.3 Setup . 26
5.4 Evaluation . 29

6 Timeline 30

7 References 31

A Supplemental Findings 37

1

Chapter 1

Introduction
The objective of the research described in this dissertation is to channel the
efforts required to leverage large handcrafted datasets by structuring the
observations as graphs. Most data-driven techniques place the burden of
sorting and sifting through features in their data to downstream optimiza-
tion techniques. However, virtual measurements make it easy to capture an
abundance of labeled entries in diverse and arbitrary states. Adequately sam-
pling these configurations leads to an exponential and combinatorial growth
of the dataset that cause difficulties to most numerical methods. Is it there-
fore necessary to first shape and funnel features drawn from large quantities
of complex, high dimensional, and interdependent variables.

We find graphs are generally suited to assembling dependencies that are
easier to operate over. Graphs map domain expertise into assumptions, con-
straints, and connections that can be generalized over the data. This added
consistency complements the dataset by assisting with the combinatorics of
the observed samples. Therefore, through careful structuring of the data into
graph-like structures, we can safely expose our algorithms to varied condi-
tions with an understanding of how the system will perform and scale.

The benefit of such an approach is the ability to tackle real and physical
constraints via an unconstrained dataset of hand-crafted and curated obser-
vations. Systems that utilize graph treatment over instances of the data are
flexible. Such methods can adapt to new situations, without additional com-
putational burden, by simply adjusting the data used to drive the pipeline
as new data becomes available. We particularly focus on data collected from
simulated and controlled environments, since these provide for physically
accurate and realistic models of behavior. We present a methodology that
outlines how to cast synthetic datasets into a structure whose processing
guarantees simpler frameworks and ultimately more robust applications.

2

1.1. METHODOLOGY CHAPTER 1. INTRODUCTION

1.1 Methodology

The goal of many researchers to achieve and model realistic behavior. We
propose a methodology for collecting and utilizing large sets of simulated
data to inform realistic models of behavior in conjunction with graph algo-
rithms. Simulated and synthetic examples are not limited like their real world
annotated counterparts. Digital observations are collected at low cost, can
be automated, and permit studying of arbitrary scenarios and interactions.
Their exploratory discretion is not without fault however, as this added free-
dom also adds both complexity and degrees of freedom to the measurements
taken. In turn, generalized patterns must be formulated across the dataset
to reduce this combinatorial expansion of variables. Graphs restrain the
space of features considered by focusing computational operations on nodes
and edges. Categorizing data into these primitives also simplifies the rela-
tionships between values by explicitly laying out dependencies. Therefore,
we believe that graphs are specifically positioned to assist with data driven
approaches that have exploded in popularity over the past decade.

Our methodology is as follows:

1. Generate a specialized dataset from synthetic data to assist an objective

2. Identify combinatorial challenges and inter-sample patterns to factor

3. Overlay a graph to instill structure and manage the spectrum of states

4. Leverage graph algorithms to operate on the data via this distilled lens

Contributions

We investigate challenges receptive to digitally acquired datasets from appli-
cations in diverse problem areas. We validate this methodology as it applies
to computer vision tasks on real world 3D printed objects, side channel ex-
traction of neural network topologies from active GPUs, and lastly efficient
strand contact simulation. We show not only that this approach is broadly
applicable, but that systems that partner data driven models with graph
algorithms outperform existing methods in terms of robustness and quality
guarantees.

3

1.2. ROADMAP CHAPTER 1. INTRODUCTION

1.2 Roadmap

The product of this dissertation will be a study of the benefits to marrying
graph structures with simulated data collection in modeling various behav-
iors. Our proposed assessment consists of three studies:

1. LayerCodes (Ch. 3) We observe how simulated proxies can assist with
the design of physical tags that embedd information in additive manu-
factured geometries. The resulting approach relies on graph structures
to produce a robust tag given the complex interplay of unconstrained
geometries present in the dataset.

2. Neural Snooping (Ch. 4) Diverse network architectures are distilled
into graphs for extraction and reconstruction through electro-magnetic
side channel attacks. Through carefully curated synthetic datasets we
are able to recover large and deep black-box designs to great fidelity.

3. Data-Driven Hair Contact (Ch. 5) We propose to apply our method-
ology against the inefficiencies of contact resolution in large scale elastic-
rod interactions by training Graph Neural Networks on simulation data.

Taken together, these evaluations survey the range of applications that stand
to benefit by combining powerful graph techniques with limitless synthetic
data points.

4

Chapter 2

Related Work

Here we overview recent advances in data-driven techniques broken into sev-
eral general areas:

1. Sim-2-Real & Real-2-Sim: Bridging real world measurements and
applications with digital models and representations.

2. Data-Driven Techniques: Leveraging statistical analysis over col-
lected databases to inform heuristics and algorithms.

3. Graph Algorithms: The involvement of graphs, trees, and more con-
temporary techniques to instill structure over data within algorithms.

Sim-2-Real & Real-2-Sim The task of Sim-to-Real, and conversely Real-
to-Sim, transfer is one shared by many application areas. Simulations provide
controlled environments for gathering observations and experimentation at
low cost. However, their validity is highly dependent on an accurate repre-
sentation of the real world.

Simulated models are often intended to be used in the real world. Appli-
cations in robotics design practice in digital sandboxes before entering real-
ity [23, 40, 50]. Similarly, techniques in computer vision are often tailored to
interpret real images and align them with software interactions [11, 22, 48].
The gap between simulation and reality must also be faced when preparing
security applications, as software and hardware considerations must be taken
into account to contend with digital and physical attacks [1, 20, 34].

On the other hand, it is often fruitful to guide the development of a
digital technique with real world measurements. Principled values facilitate

5

CHAPTER 2. RELATED WORK

parameter tuning in the case of physics-based simulations, which combine
mechanical and physical equations to produce dynamic behavior [5, 13, 24].
Careful understanding and measurement of the real world can also inform
design. Such is the case most prominently when manufacturing features
that depend on physical interactions, as in the fields of physical information
embedding [27, 28, 35] and digital design for fabrication [44, 46, 45].

Data-Driven Techniques Curated datasets provide alternatives when
precise behavioral models are unavailable or expensive. Often these measure-
ments provide an input-output pair collected by labeling real world data, as
is often the case with image based datasets [9, 10]. These datasets feature
practical scenarios in the wild, but can often times be laborious or subjective
to label. Data-driven techniques can also benefit from synthetic collections,
such as those comprised of 3D objects or paths [3, 15, 53], as is often of in-
terest to those in robotics. Regardless of their form, these datasets describe
aggregate behavior that can be used to statistically dictate algorithms.

Data-driven models approximate complexity in a variety of ways. Model-
reduction techniques couple datasets with simplified or scaled behavioral
models. These include methods that make simplifying assumptions about dy-
namic behavior [12, 13], or project degrees of freedom into a lower dimensional—
and thereby easier to solve—space [14, 51]. Machine learning approaches pair
neural networks with data to great effect. By linking results to data features
through gradient descent and back-propagation, applications in vision [19],
security [52], natural language processing [49], and robotics [25], all stand
to benefit from larger datasets when possible, and have been shown to work
with both synthetic and real data.

Graph Algorithms Mathematical graph theory extends into computer
science by way of graph data types and traversal algorithms. These ap-
proaches define rules over collections of nodes and edges, attributing each
with specific properties and relationships to one another [18, 37]. This gives
structure abstractly to data formulated in such primitives, e.g. limiting data
in a graph node to only interact with incident edges or neighboring nodes.

Recently these approaches have been combined with machine learning
techniques to directly benefit from datasets. The result is the introduction
of Graph (Neural) Networks who host embeddings on nodes and edges of
a graph that can influence one another through neural-graph hybrid opera-
tions [2, 38, 42]; and profit from both data-driven and graph techniques.

6

Chapter 3

LayerCodes
With the ongoing advance of personal and customized fabrication techniques,
the capability to embed information in physical objects has become both
more crucial and challenging. Traditionally optical barcodes serve as the
indispensable link that bridges physical artifacts to modern digital systems.
However, barcodes rely on constrained industrial designs that mandate flat
and smooth geometries. In this work, we rethink barcodes in the context of
additive manufacturing, popularly known as 3D printing. 3D printing offers
a quick way of making customized, complex shaped objects. Unlike a mass-
produced product which by design has a reserved flat surface region to host
barcodes, 3D printed shapes are often complex and curved: thin features,
slender threads, and holes are not uncommon. As a result, the traditional
barcodes cannot be placed or printed on such objects.

We apply our methodology to improve the optical tagging of custom 3D
shapes. We motivate our design by generating a dataset of 4,835 printable
shapes, along with image renderings of our objects from various views, that
allows us to experiment and preview challenges specific to customized ge-
ometries. We study this dataset to identify local invariants common to all
shapes, regardless of holes or intricate features. These local properties are
extracted from renderings of tagged objects and used to construct a graph,
which abstracts out spatial complexities, allowing all custom shapes to be
treated uniformly. Traversing this graph we achieve a robust in-plain-sight
algorithm that enables the 3D printing layers to carry information without
altering the object’s geometry. We name our tagging scheme LayerCode,
and demonstrate how a carefully designed pattern may be directly embed-
ded in objects as a deliberate byproduct of the 3D printing process. We show
that LayerCodes work across various types of 3D printers, and succeed on
complex, nontrivial shapes, on which previous tagging mechanisms all fail.

7

3.1. METHOD CHAPTER 3. LAYERCODES

Objective LayerCodes aims to bring the concept of optical barcodes into
3D printed objects, especially those with curved shapes and fine structures.
Our key idea is inspired by a structural resemblance between optical bar-
codes and 3D printed objects: essential in a barcode are its two-tone bars
arranged in parallel; universal in all 3D printed objects are the printing layers
introduced in a parallel fashion. In fact, virtually all additive manufacturing
uses a layer-by-layer printing process [32, 39]. Thus, if we could interleave
two categories of layers in a 3D printing process—be it through color, texture
or otherwise—we would be able to embed a tag everywhere in a 3D printed
object.

Materializing this idea faces major algorithmic and combinatorial chal-
lenges. Due to an object’s complex shape, its layering structure may appear
curved, disconnected, or shadowed when captured by a camera. It is difficult
to anticipate how these effects will interplay under perspective projection
without first deploying any proposed encodings across a variety of objects.
Moreover, unconstrained printable shape geometries, such as those allotted
by customized fabrication, readily combine in a diversity and frequency of
patterns that can easily overwhelm naive decoding approaches that fail to
generalize. We therefore seek a robust encoding and decoding algorithm that
embeds information in printing layers and later retrieves this information
from the images of a conventional camera.

3.1 Method

We address these challenges by introducing a new coding algorithm and ver-
ifying it through a large dataset of simulated examples. Unlike the standard
barcode that maps every bit to a fixed bar thickness, we encode individual
bits based on the local change of layer thickness. We will show that such local
changes are invariant under different surface orientations and curvatures. At
decoding time, we exploit a key observation that each layer spans the entire
cross-section of the object. This suggests that there exist many image-plane
paths along which we can decode. The rich set of decoding paths is advan-
tageous, enabling us to sidestep shadows, highlights, and uncertain image
regions. Together these steps allow us to tag robustly, as supported through
both simulated and real-world LayerCoded geometries.

8

3.1. METHOD CHAPTER 3. LAYERCODES

Encoding

The input to our encoding algorithm is a 3D shape, the tag information
represented as a bit string, as well as the printing direction with respect to
the printed object (i.e., the direction along which 3D printing layers will be
grown). Unlike other tagging methods, there is no restriction on the 3D
printed shape. We leave the flexibility of choosing a printing direction to
the user, because the printing direction may depend on the specific shape,
printing software, support materials, and perhaps semantic or subjective pref-
erences. The output of the encoding algorithm is a series of slices along the
printing direction to specify the thickness of each coding layer.

Our key insight comes from noticing the fact that if the coding layers
are thin (relative to the inverse of the surface curvature along the printing
direction), the thickness ratio of two consecutive layers measured in a local
region of the image plane is invariant. This is because in a small local region,
two nearby coding layers share approximately the same surface tangent plane,
and the projection from the tangent plane to the image plane follows an affine
transformation which preserves the layer thickness ratio.

Using local thickness ratios also favors the decoding step. It allows us
to sample the thickness ratio of two layers at many local regions on a cap-
tured image, and collectively estimate a thickness ratio that is robust against
imaging noise and artifacts.

Coding scheme We propose the following scheme to encode every bit in
a bitstring. A bit “1” is encoded if the thickness ratio of two consecutive
layers is either 1/M or M , where M is a constant larger than 1 that we will
discuss shortly, and a bit “0” is represented by a unitary thickness ratio (i.e.,
the same thickness). The representation of a bit string always starts from a
layer with a baseline thickness h. The next layer thickness an+1 is either h
or Mh according to the current bit bn+1 and the previous layer thickness an,
namely,

an+1 =

an if bn+1 = 0,

Mh if bn+1 = 1 and an = h,

h if bn+1 = 1 and an = Mh.

(3.1)

9

3.1. METHOD CHAPTER 3. LAYERCODES

At decoding time, we recover the bit string sequentially, using the inverse
map

bn+1 =

{
1 if log an − log an+1 = ± logM,

0 if log an − log an+1 = 0.
(3.2)

In practice, the value of log an − log an+1 will never be precisely ± logM
or 0 due to the image estimation errors. But a nice property of this coding
scheme is that the estimated values of log an − log an+1, when viewed as a
random variable, will form three distribution modes symmetrically centered
at ± logM and 0. We will later return to this property for robust decoding.
Figure 3.1 illustrates this scheme for M = 2.

bit 0

bit 1

Figure 3.1: Encoding scheme. Pairs of layers encode a single bit. A bitwise
0 or 1 can be determined by computing the ratio of adjacent layer thicknesses.

For further details regarding choice of M , guarantees surrounding in-
formation capacity, and encoding bitstring direction, repetition, and error
correction, please refer to the full paper [35].

Decoding

We propose a graph-based algorithm in order to robustly tackle the challenges
associated with decoding the proposed scheme from image pixels of complex
geometries. This is achieved by first constructing a graph to represent the
potentially fragmented layer structure. We treat each coding layer region,
which may not include an entire layer, as a graph node. Two nodes are
connected if they are from different but neighboring layers.

Graph Construction Through a flood-fill process, we identify individual
pixel regions where all pixels share a category as a preprocessing step. Each

10

3.1. METHOD CHAPTER 3. LAYERCODES

A

B

C

E
D

A

B

undirected graph
without direction constraints

C

D

E

directed graph
with direction constraints

A

B

C

D

E

layering direction

Figure 3.2: Graph construction and traversal. (left) Pixel regions are
identified (A-E) through flood filling. (middle) Nodes are connected to form
a graph if their regions are adjacent to each other. Since layers are added
along the printing direction, it makes no sense to traverse backwards along
a direction whilst decoding. Thus, A→B→C would not produce a valid bit
string, while A→B→D is reasonable (right).

region is represented as a graph node, and two nodes are connected if their
regions are adjacent to each other (3.2-a,b).

Next, we associate every graph edge e with two quantities, a 2D vector v
in image space and a binary label r. Consider an edge e that connects nodes
A and B. At each boundary pixel, we estimate a boundary normal direction
as the direction along which we can enter into a different region by moving
the shortest distance. v is then defined as the average normal direction over
all boundary pixels between region A and region B. When computing the
average, we use the normal direction np for pixel p in region A. Thus, the
average direction v is in fact associated to the directed edge from A to B,
and for clarity we denote it as vA→B.

The binary label r is associated to the undirected edge, and is denoted as
rA↔B for clarity. We compute rA↔B as follows. First, from each boundary
pixel p between A and B, we estimate the layer thickness hA(p) of the region
A by first finding the shortest image-plane vector dm between p and another
region that is not A or B but connected to A. hA(p) is then set to be the
length of dm projected on the normal direction np Symmetrically, from p,
we also estimate the layer thickness hB(p) of B using a similar step. Then,
pixel p contributes a vote for rA↔B. It votes for label “0” if | log hA(p) −
log hB(p)| < 1

2
logM (i.e., closer to 0), indicating the second case in eq. 3.2

and suggesting a bit “0” encoded between A and B. On the other hand, if
| log hA(p)− log hB(p)| ≥ 1

2
logM , it votes for label “1”, suggesting the first

case in eq. 3.2 and hence a bit “1”. The final label rA↔B is taken as the
majority vote over all boundary pixels.

11

3.2. EVALUATION CHAPTER 3. LAYERCODES

At first glance, assigning the label rA↔B requires a prior knowledge of
M , which is not known from the image. Fortunately, our coding scheme
presented in 3.1 enables an easy and robust way of estimating logM . In the
above process, we collect all | log hA(p) − log hB(p)| values for all boundary
pixels on the image. From 3.2, we know that these values are expected to
be either logM or 0, although we do not know what M is. If we think
of each | log hA(p) − log hB(p)| value as a random variable, these random
variables must be generated through a mixture of two Gaussians (in 1D):
one is centered at 0, and another center (i.e., logM) is unknown but can be
estimated using the maximum likelihood estimation [36].

Decoding through Graph Traversal We now decode the bit string by
traversing the graph node-by-node in a depth-first manner. Because the
object is always 3D printed in a layer-by-layer fashion, we must avoid looping
back to earlier layers during the traversal. To this end, the direction vector,
v, associated to each edge is helpful. As illustrated in 3.2-c, consider a
traversal that reaches a node B from a node A. In the DFS, we visit the
next node D, only when the moving direction from A to B is approximately
consistent with the moving direction from B to D. In other words, we require
vA→B · vB→D ≥ ∆ (∆ = 0.35 in all our examples).

This graph traversal process generates many paths and thus many bit
strings. Some of them might be erroneous due to image noise. But col-
lectively, they are robust. Therefore, we finalize the bit string by taking a
bit-wise majority vote over all decoded bit strings.

For further remarks that improve the robustness and efficiency of decod-
ing we defer the reader to the original work [35].

3.2 Evaluation

To validate the performance of our coding algorithm thoroughly, we must
test our algorithm on a large diversity of shapes. In large part thanks to
the ease and faithfulness generated by a photorealistic renderer, we are able
to sidestep practical concerns required to develop such a validating dataset
through the use of synthetic examples. A glimpse of the tested shapes is
shown in Figure A.1. This evaluation over such a virtual dataset is justified
by several considerations:

12

3.2. EVALUATION CHAPTER 3. LAYERCODES

i. Cost and time. In terms of both cost and time, it is unaffordable to
3D print all the shapes in the dataset. 3D printing of a single object is
usually an hour-long process, barring failures. Virtual rendering of 3D
printed objects, on the other hand, can be finished in a short time, and
the resulting images are photorealistic.

ii. Feasibility. For many complex shapes that we use in this evaluation, it
is hard, if not impossible, to fabricate them via current commodity 3D
printers. But 3D printing technology is constantly and rapidly improving.
Therefore, it is desirable to test our algorithm on those complex shapes to
prepare for the future.

iii. Thoroughness. In a virtual environment, we can test our algorithm using
a large number of objects viewed from many camera angles. Thoroughly
testing over all these variances provides us statistical insights which in turn
guide our use of LayerCode tags in practice. This thoroughness is made
possible only through simulated experiments.

Dataset

We tested our algorithm over a set of shape meshes from the Thingi10k
dataset [53]. The testing shapes are selected through the following “printabil-
ity” criteria: 1) They must be watertight 2-manifolds (i.e., no self-intersections),
and 2) consist of a single connected component. 3) They should also have
consistent surface normals without degenerate faces.

Following these criteria, we obtain 4,835 meshes. Each of these meshes
is processed to embed a LayerCode tag indicating the mesh’s database ID.
When we encode the tag (using the procedure discussed previously), the
printing direction is chosen to be the longest dimension of the mesh, and the
baseline layer thickness h is set to repeat the tag three times. The output
of the encoding step is a shape with two sets of coding layers ready for
rendering. Each type of layer is assigned a different material color (i.e., red
and blue). We then use the physics-based renderer Mitsuba [21] to generate
a photorealistic image from a given camera angle.

To understand how the view angles affect the decoding, we uniformly
sample 30 viewing directions on a sphere co-centered with the object. All the
view directions are guaranteed far from the printing direction, since looking
along the printing direction unlikely displays the entire barcode. Figure A.1
shows 18 representative shapes and the rendered images from multiple view

13

3.3. EXPERIMENTS & RESULTS CHAPTER 3. LAYERCODES

Mercator projection of viewing angle success
on our virtual database

Z

Y X

Figure 3.3: The decoding success rate of each view direction is color-
mapped to a sphere, whose equatorial plane is perpendicular to the printing
direction. This mapping is unrolled in the Mercator projection, with repre-
sentative views shown (on top) for a few points of interest.

angles. The image from each view is the only input to the decoding algorithm,
and thus each view is decoded independently.

3.3 Experiments & Results

Camera angle dependency Because of the surface curvature and local
occlusions, from certain camera angles the coding layers are better seen.
A natural question is what camera angles are more suitable for decoding
the tag. Figure 3.3 reports our experiment results, suggesting that view
directions just north or south of the equator appear statistically the most
promising for decoding tags.

Figure 3.4 shows that some shapes can accommodate a wider range of
view angles than others for successful decoding. For example, one shape is
readable from all 30 views, whereas 44 other shapes are not decodable at
all (which account for only 0.9% of the shapes in the dataset). On average,
for any given shape, its tag is readable from 51% of the viewing directions

14

3.3. EXPERIMENTS & RESULTS CHAPTER 3. LAYERCODES

sampled. Overall, 78.0% of the shapes can be decoded in 10 views, 49.5%
can be decoded in 15 directions, and 21.7% can succeed in 20 directions.

100

60

80

40

20

78.0%

49.5%

21.7%

database covered with at least n views
de

co
da

bl
e

pe
rc

en
ta

ge

 30 25 20 15 10 5 0

99.6%

number of views

Figure 3.4: We plot the distribution of all 4,835 tested shapes with respect
to the number of view angles from which they can be decoded successfully.
99.6% of the shapes can be decoded from at least one sampled view direction.

Lower bound of h. A smaller h allows the object to host more copies of
the tag. But if h is too small, the coding layers will become hardly discernible
on the image. In an experiment, we progressively reduce h and encode only a
single copy of an ID in the object. In this process, we keep the camera angle
and image resolution unchanged, and check at what h value the decoding
would fail. Not surprisingly, the lower bound of h depends on the object
shape. Figure 3.5 reports the results.

0.180 mm0.679 mm 0.623 mm 0.940 mm 0.922 mm

Figure 3.5: Lower bound of h. Here we show the smallest baseline layer
thickness h still readable under different views for shapes normalized to 10cm
in length along the printing direction.

15

Chapter 4

Neural Snooping
The graphics processing unit (GPU) is a favored vehicle for executing a neu-
ral network. GPUs allow difficult and sizable jobs to be treated faster, and
have been used extensively in state of the art machine learning pipelines
across both academic and commercial settings. The use of GPUs is moti-
vated by the need to tune neural network applications meticulously for each
task, since designs that can robustly resolve queries end up in high demand.
As the commercial value of accurate and performant machine learning models
increases, so too does the demand to protect neural architectures as confi-
dential investments. This requires a careful look at the GPU.

We apply our methodology to explore the vulnerability of neural networks
deployed as black boxes across accelerated hardware through electromagnetic
side channels. We simulate a large number of queries across diverse neural
architectures and gather side channel measurements with a cheap induction
sensor. Examining the collected signals, we discover local patterns associated
with individual computational steps, that taken together form the layers and
blocks that define neural networks. We distill graphs from these observations
that match the topology of network models and extraction of layer-specific
attributes. By optimizing over these graphs and deducing crucial parameters,
we exploit a robust side-channel signal that is able to generalize across both
networks and hardware. We demonstrate the potential accuracy of this side
channel attack in recovering the details required for a broad range of network
architectures and attack scenarios.

Objective We wish to know the extent to which networks produce an iden-
tifiable magnetic signature, from which layer topology, width, function type,
and sequence order can be inferred. Our primary focus centers on using
an electromagnetic side channel to reverse engineer neural architectures and

16

4.1. METHOD CHAPTER 4. NEURAL SNOOPING

their defining layer parameters. The networks in question may be of arbitrary
size and depth, and involve combinations of fully connected, convolutional,
and recurrent layers, along with a medley of interspersed activation, normal-
ization, and pooling layers. Together these layers span the basic components
used to assemble most state of the art networks and account for models used
across a variety of machine learning applications [19, 52, 49, 25, 47, 26].

4.1 Method

We examine the magnetic flux emanating from a graphics processing unit’s
power cable, as acquired by a cheap $3 induction sensor, and find that this
signal betrays the detailed topology and hyperparameters of a black-box
neural network model.

weiv edis weiv pot
GPU power cable

Analog-to-Digital
Converter

GND

USB output

GPU

Sensor placed on the power cable

Figure 4.1: Sensing setup. Placement of the magnetic induction sensor
on the power cord works regardless of the GPU model, providing a common
weak-spot to enable current-based magnetic side-channel attacks.

To reconstruct the black-box network’s structure from the acquired signal,
we propose a two-step approach. First, we estimate the network topology,
such as the number and types of layers, and types of activation functions,
using a suitably trained neural network classifier. Then, for each layer, we es-
timate its hyperparameters using another set of deep neural network (DNN)
models. The individually estimated hyperparameters are then jointly opti-
mized by solving an integer programming problem to enforce consistency be-
tween the layers. We demonstrate the potential accuracy of this side-channel
attack in recovering the details for a wide range of networks, including large,
deep networks such as ResNet101 [19]. We further apply this recovery ap-
proach to demonstrate black-box adversarial transfer attacks.

Topology Recovery

Since neural models function to process input data into an output, they can
be unrolled into a directed acyclical graph of network steps. This forms

17

4.1. METHOD CHAPTER 4. NEURAL SNOOPING

the topology of the network architecture, and is how hardware functions to
process data, since layer inputs depend on the output of other layers. Thus,
by casting individual layers as graph nodes, connected to other nodes by the
flow of logits in the network, we can isolate the span of signals necessary
to recover a network. Namely, looking at nodes or edges suffices to recover
individual steps of the network, which combine in sequential and semantic
order as a neural network.

Classifying steps of a model entails converting a time-series signal to a
series of labeled operations. The EM signal responds only to the GPU’s
instantaneous performance, but because the GPU executes a neural network
sequence, there is rich context in both the window before and after any
one segment of the signal. Some steps are often followed by others, such
as pooling operations after a series of convolutions. We take advantage of
this bidirectional context of our signal to sequence classification problem by
utilizing a recurrent neural network to classify the observed signal.

Bidirectional Long Short-Term Memory (BiLSTM) networks are well-
suited for processing time-series signals [16]. We train a two-layer BiLSTM
network to classify each signal sample into a predicted step (see 4.2-b). The
input to our network is a sliding window of the time-series signal, the en-
tirety of which is classified according to the step operations from our sim-
ulated network architecture dataset. We train the BiLSTM by minimizing
the standard cross-entropy loss between the predicted per-sample labels and
the ground-truth labels.

This approach proves robust at identifying the sequence of steps. It en-
ables all of our experiments and all GPU’s tested to recover the layers of
the target network, including their type (e.g., fully connected, convolution,
recurrent, etc.), activation function, and any subsequent forms of pooling or
batch normalization. What remains is to recover layer hyperparameters.

Hyperparameter Estimation

The number of hyperparameters that describe a layer type depends on its
linear step. For instance, a CNN layer type’s linear step is described by
size, padding, kernel size, number of channels, and stride hyperparameters.
Hyperparameters within a layer must be intra-consistent. Of the six CNN
hyperparameters (stride, padding, dilation, input, output, and kernel size),
any one is determined by the other five. Hyperparameters must also be
inter-consistent across consecutive layers: the output of one layer must fit

18

4.1. METHOD CHAPTER 4. NEURAL SNOOPING

the input of the next. A brute-force search of consistent hyperparameters
easily becomes intractable for deeper networks; we therefore first estimate
hyperparameters for each layer in isolation, and then jointly optimize to
obtain consistency.

Initial estimation. We estimate a specific hyperparameter of a specific
layer type, by pretraining a DNN. We pretrain a suite of such DNNs, one for
each (layer type, hyperparameter) pairing. With the layers (and their types)
recovered, we can estimate each hyperparameter using these pretrained (layer
type, hyperparameter) recovery DNNs.

These DNN accept feature vectors describing two signal segments: the
linear step and the immediately subsequent step. The subsequent step (e.g.,
activation, pooling, batch normalization) requires effort proportional to the
linear step’s output dimensions, thus its inclusion informs the estimated out-
put dimension. Each segment’s features involves extracting averages from
(i) partitioning the segment uniformly into N windows, and (ii) concatenat-
ing the segment’s time duration. However, there is no guarantee that this
produces a valid network in that neighboring step estimates are consistent.

Joint optimization. To enforce consistency on initial estimates we jointly
optimize, seeking values that best fit their initial estimates, subject to con-
sistency constraints. Our optimization minimizes the convex quadratic form

min
xi∈Z0+

∑
i∈X

(xi − x∗
i)

2 , subject to consistency constraints, (4.1)

where X is the set of all hyperparameters across all layers; x∗
i and xi are the

initial estimate and optimal value of the i-th hyperparameter, respectively.
The imposed consistency constraints are:
(i) The output size of a layer agrees with the input size of the next layer.

(ii) The input size of the first layer agrees with the input feature size.

(iii) The output size of a CNN layer does not exceed its input size.

(iv) The hyperparameters of a CNN layer satisfy

sout =

⌊
sin + 2β − γ(k − 1)− 1

α
+ 1

⌋
, (4.2)

where α, β, γ, and k denote the layer’s stride, padding, dilation, and
kernel size, respectively.

19

4.1. METHOD CHAPTER 4. NEURAL SNOOPING

(v) Heuristic constraint: the kernel size must be odd.
Among these constraints, (i-iii) are linear constraints, which preserves

the convexity of the problem. The heuristic (v) can be expressed as a linear
constraint: for every kernel size parameter kj, we introduce a dummy variable
τj, and require kj = 2τj + 1 and τj ∈ Z0+. Constraint (iv) , however,
is troublesome, because the appearance of stride α and dilation γ, both of
which are optimization variables, make the constraint nonlinear.

Since all hyperparameters are non-negative integers, the objective must be
optimized via integer programming: IP in general case is NP-complete [37],
and the nonlinear constraint (iv) does not make life easier. Fortunately, both
α and γ have very narrow ranges in practice: α is often set to be 1 or 2, and
γ is usually 1, and they rarely change across all CNN layers in a network. As
a result, they can be accurately predicted by our DNN models; we therefore
retain the initial estimates and do not optimize for α and γ, rendering (4.2)
linear. Even if DNN models could not reliably recover α and γ, one could
exhaustively enumerate the few possible α and γ combinations, and solve the
IP problem (4.1) for each combination, and select the best recovery.

The IP problem with a quadratic objective function and linear constraints
can be easily solved, even when the number of hyperparameters is large (e.g.,
> 1, 000). In practice, we use IBM CPLEX [6], a widely used IP solver.
Optimized hyperparameters remain close to the initial DNN estimates, yet
differ in that they are guaranteed to define a valid network structure.

vo
lts 5.0

4.5

ms20 251550 10

4.0

3.5

3.0

2.5
conv BN relu MP conv con

vBN BNaddrelu relu

Figure 4.2: Leaked magnetic signal. (left) Our induction sensor captures a
magnetic signal of a CNN running on the GPU. The GPU has to synchronize
steps, resulting in a sharp drop of the signal level (highlighted by selected red
circles). (right) We can accurately classify the network steps and reconstruct
the topology, as indicated by the labels under the x-axis. Here we highlight
the signal regions associated with convolutions (conv), batch-norm (BN),
Relu activations (relu), max-pooling (MP), and adding steps together (add).

20

4.2. EVALUATION CHAPTER 4. NEURAL SNOOPING

4.2 Evaluation

Data capture. Pretraining the recovery DNN models (recall 4.1) requires
an annotated dataset with pairwise correspondence between signal and step
types (see 4.1). We can automatically generate an annotated signal for a
given network and specific GPU hardware, simply by executing a query (with
arbitrary input values) on the GPU to acquire the signal. Timestamped
ground-truth GPU operations are available by deep learning libraries (e.g.,
torch.autograd.profiler in PyTorch and tf.profiler in TensorFlow).

Training Set Details. The set of networks to be annotated could in prin-
ciple consist (i) solely of randomly generated networks, on the basis that
data values and “functionality” are irrelevant to us, and the training serves
to recover the substeps of a layer; or (ii) of curated networks or those found
in the wild, on the basis that such networks are more indicative of the typical
black-box. We construct our training set as a mixture of both approaches.

Randomly generated networks involve base steps made up of a mixture
of fully-connected, recurrent, and CNN layers. These are accompanied by
5 different activation functions, 2 types of pooling layers, and a potential
normalization operation. Off the shelf networks consist of VGG and ResNet
variants. All in all we consider 500 networks for training, ranging from
4 to 512 steps per network and culminating in 70, 933 individual steps in
total. When we construct these networks, their input image resolutions are
randomly chosen from [224×224, 96×96, 64×64, 48×48, 32×32]: the highest
resolution is used in ImageNet, and lower resolutions are used in datasets
such as CIFAR.

4.3 Experiments & Results

Topology reconstruction. As discussed in 4.1, we use a BiLSTM model
to predict the network step for each single sample. Table 4.1 reports its
accuracy, measured on an Nvidia Titan V GPU. There, we also break the
accuracy down into measures of individual types of network steps, with an
overall accuracy of 96.8%. An interesting observation is that the training
and test datasets are both unbalanced in terms of signal samples (see last
column of Table 4.1). This is because in practice convolutional layers are
computationally the most expensive, while activation functions and pooling

21

4.3. EXPERIMENTS & RESULTS CHAPTER 4. NEURAL SNOOPING

Table 4.1: Classification accuracy of network steps (Titan V)

Layer Type Prec. Rec. F1 # samples
LSTM .997 .992 .995 8,704
Conv .993 .996 .994 447,968
Fully-connected .901 .796 .846 10,783
Add .984 .994 .989 22,714
BatchNorm .953 .955 .954 47,440
MaxPool .957 .697 .806 4,045
AvgPool .371 .760 .499 675
ReLU .861 .967 .911 28,512
ELU .464 .825 .594 2,834
LeakyReLU .732 .578 .646 9,410
Sigmoid .694 .511 .588 8,744
Tanh .773 .557 .648 4,832
Weighted Avg. .968 .967 .966 -

are lightweight. Also, steps like average pooling are less frequently used.
While such data imbalance does reflect reality, when we use them to train
and test, most of the misclassifications occur at those rarely used, lightweight
network steps, whereas the majority of network steps are classified correctly.

We evaluate the quality of topology reconstruction using normalized Lev-
enshtein edit distance that has been used to evaluate network structure sim-
ilarity [17, 20]. Here, Levenshtein distance measures the minimum number
of operations—including adding/removing network steps and altering step
type—needed to fully rectify a recovered topology. This distance is then
normalized by the total number of steps of the target network.

Among the 64 tested networks, 40 of the reconstructed networks match
precisely their targets, resulting in zero Levenshtein distance. The average
normalized Levenshtein distance of all tested networks is 0.118, and confirms
our networks are recovered with often exact step matches and model lengths.

To provide a sense of how the normalized Levenshtein distance is related
to a network’s ultimate performance, we conduct an additional experiment to
gauge reconstruction quality via classification accuracy. We consider AlexNet
(referred as model A) and its five variants (refered as model B, C, D, and E,
respectively). The variants are constructed by randomly altering some of
the network steps in model A. The Levenshtein distances between model A
and its variants are 1, 2, 2, 5, respectively, and the normalized Levenshtein
distances are 0.05, 0.11, 0.11, 0.28 (see Fig. A.2). We then measure the
performance (i.e., standard test accuracy) of these models on CIFAR-10. As
the edit distance increases, the model’s performance drops.

22

4.3. EXPERIMENTS & RESULTS CHAPTER 4. NEURAL SNOOPING

Table 4.2: Model extraction accuracy on CIFAR-10

Model Target Titan V Titan X GTX1080 GTX960
VGG-11 89.03 89.61 89.63 88.46 88.3
VGG-16 90.95 91.08 91.03 89.33 90.78
AlexNet 81.68 85.26 85.11 85.27 85.03
ResNet-18 92.77 92.61 92.82 92.79 92.04
ResNet-34 92.21 92.28 92.95 90.81 92.71
ResNet-50 90.89 91.8 91.97 91.2 91.29
ResNet-101 91.58 91.91 91.85 91.37 91.72

DNN hyperparameter estimation. Next, we report the test accuracies
of our DNN models (discussed in Ch. 4.1) for estimating hyperparameters
of convolutional layers. Our test data here consists of 1804 convolutional
layers. On average, our DNN models have 96%-97% accuracy. The break-
down accuracies for individual hyperparameters are shown in Table A.1 of
the appendix.

Reconstruction quality measured as classification accuracy. Ulti-
mately, the reconstruction quality must be evaluated by how well the recon-
structed network performs in the task that the original network aims for. To
this end, we test seven networks, including VGGs, AlexNet, and ResNets,
that have been used for CIFAR-10 classification (shown in Table 4.2). We
treat those networks as black-box models and reconstruct them from their
magnetic signals. We then train those reconstructed networks and compare
their test accuracies with the original networks’ performance. Both the re-
constructed and original networks are trained with the same training dataset
for the same number of epochs. The results in Table 4.2 show that for all
seven networks, including large networks (e.g., ResNet101), the reconstructed
networks perform almost as well as their original versions.

Transfer Attacks. Results of using such an approach to enable transfer
attacks is deffered to Appendix A. Further findings discussing extraction and
comparisons among GPUs can be found in the full text [34].

23

Chapter 5

Data-Driven Hair Contact

Modern hair simulation pipelines are largely throttled by their handling of
inter-strand contact. Accurate collision resolution between rods is computa-
tionally expensive at scale and virtually prohibitive at large time steps. The
overall difficulty stems from time required to converge on a solution to col-
lision handling when treating large intertwined contact networks. It is often
necessary to approximate the contact handling in order to maintain simula-
tion progress. Concessions may involve adopting a simplified contact model,
curtailing the number of contacts treated, or limiting the time allotted to-
wards contact resolution (often by capping the number of solver iterations
permitted for friction handling). The are no guarantees on the accuracy or
convergence of the resulting contact update that shapes each timestep of
most practically sized examples. Yet, even after surrendering accuracy, con-
tact remains a bottleneck. A technique for efficient large scale hair contact
resolution that addresses these shortcomings is therefore highly desirable.

We propose to continue the partnership developed between simulated ex-
amples and graph formulations in order to tackle the challenges surrounding
efficiently simulating hair contact. We will generate strand-strand contact
resolution data to pair with input collision configurations by running a base-
line hair simulation on desired examples. Inspecting these samples we dis-
cover time-varying contact clusters that form spatially, and their properties
that inform the contact solve. We translate these contact clusters into graphs
that can be used to train a machine learning model to infer post-solve degrees
of freedom from contact configurations. We propose to utilize these graphs
in conjunction with aggregated simulation data to train an efficient approxi-
mate hair contact model that can be used to exhibit large scale simulations.

24

5.1. METHOD CHAPTER 5. DATA-DRIVEN HAIR CONTACT

Objective We are motivated to introduce a data-driven alternative that
can expedite contact for hair simulations. However, data-driven approxima-
tions face two concerns when applied to hair contact. Firstly, elastic rods do
not map naturally to existing network architectures or model reduction tech-
niques. Secondly, the space of contact configurations we aim to approximate
grows combinatorially. We seek a result free of visual artifacts and flexible
enough to work with various strand models. Any method is acceptable so
long as it can achieve similar results and reduce the costs incurred by the
simulation.

5.1 Method

We propose to train a data-driven contact resolution model based on slow
albeit accurate collision solves, so that the data used to guide our model
is physically principled. This allows us to leverage existing discrete elastic
rod simulations that we wish to emulate with the ability to generate labeled
datasets as needed. The simulated input configurations and output collision
resolutions generated are used to inform a neural network, making us the
first to bridge physics-based elastic rod simulations with machine learning.

We propose to address both the structuring and constraining of our data
pairs through the use of Graph Neural Networks [2, 4, 30, 31, 38, 41, 42, 43].
We reformulate the data generated by mapping contact clusters of strands
onto a graph structure. We propose a novel interpretation of dynamic piece-
wise linear elastic curves in 3D as embeddings held in nodes and edges of a
graph network. Elements in the graph network are combined with machine
learning algorithms to process latent embeddings and to communicate across
the graph which includes contact edges. This transformation sidesteps the
overwhelming complexity of data introduced by simulating free curves in
space with possibly varying degrees of freedom and contact stencils. This
framework allows us to moderate any exponential or combinatorial expansion
of our dataset, and constrains our efforts to solve local operators on the
proposed graph. The resulting simulation targets foremost the improvement
in efficiency of collision resolution while remaining visually plausible.

25

5.2. CONTRIBUTIONSCHAPTER 5. DATA-DRIVEN HAIR CONTACT

5.2 Contributions

Our proposed approach features the following contributions:

• Fast large scale simulations trained from small scenes

• Stable results free of artifacts not present in training

• First to combine hair contact with machine learning

– A novel Graph Network processing formulation and application

• Flexibility to replace any black box strand contact resolution scheme

• Model and parameter agnostic, working for straight and curly strands

5.3 Setup

The nonlinear number of collisions and changing contact bodies poses a chal-
lenge to training a neural model which requires consistently shaped inputs.
Penetrating objects may be composed of different degrees of freedom and
shapes, making a fully connected multi-layer perceptron or convolutional net-
work difficult to assemble. The elements in contact also change as collisions
appear and are resolved throughout the simulation, with no spatial-temporal
coherence. In order to manage variable sized inputs pertaining to contact
clusters and strands that change in the number of primitives involved, we
take advantage of Graph Neural Networks.

Hair strands are formed of vertices connected by edges, and these edges
come into contact with other strands at their corresponding edges (i.e. edge-
edge collision detection). Therefore, rather than directly translating hair
vertices and strand edges to graph nodes and edges, we stand to benefit from
viewing the dual of our rod structure.

We map the material edges of each strand to graph nodes. Consequently,
we connect these nodes with graph edges that represent the internal mate-
rial vertices and edges of each strand. This enables us to treat interactions
between edges, i.e. contacts, in simulation space by connecting nodes with
an edge in our graph formulation. We categorize these volatile connections
as contact edges, and together with the nodes and internal-vertex edges they
form the DualGraph.

26

5.3. SETUP CHAPTER 5. DATA-DRIVEN HAIR CONTACT

Figure 5.1: Dual Strand. We map elastic rods to a neural-amenable graph
of their dual representation by converting simulation edges to GraphNet
nodes and connecting them with graph edges.

This inverted approach has several advantages. Firstly, contacts between
strands can be simply connected via a conventional edge between nodes in
the DualGraph, avoiding the redundancies and intricacies associated with
relating interacting edges in the primal picture. Furthermore, discrete elas-
tic rods exhibit twist and bending modes that are only present at internal
vertices of the strand. Twisting and bending can be thought of as deviations
to material frames present on strand edges, and so a DualGraph framework
more naturally captures these features.

Once constructed, we convert the features hosted by our DualGraph by
using the encoder-processor-decoder framework adopted by previous Graph-
Net simulation frameworks [38, 42, 41]. The first step converts features into
an in-place latent embedding on the graph. Next, we process our graph to
relate information across adjacent and incident graph elements (e.g. inform
nodes with incident edges). Lastly, we decode the graph back to physical
quantities for use in our simulation. In a force or contact-only based formu-
lation, we may decode contact edges to retrieve impulses. If velocities are
the desired output than we convert graph nodes and material edges into the
vectors of similar degrees of freedom that indicate changes to velocities for
each strand or vertex.

27

5.3. SETUP CHAPTER 5. DATA-DRIVEN HAIR CONTACT

Figure 5.2: Three strands in contact. Strands in contact (left) naturally
form DualGraphs (right), where edge-edge collisions are easily represented.

Data Aggregation We take our data from the readily available and pop-
ularly used friction and impulse formulation of hair contact provided by dis-
crete elastic rods. This approach has traditionally been shown at scale [24, 7]
and suffers from the common contact handling bottlenecks we aim to address.
Other penalty-based variants [13, 29] may also be used.

Training from an entirely simulated examples allows us to benefit through
principles of Direct Policy Learning. Rather than relying on a predetermined
or constrained dataset, we instead have an interactive demonstrator by means
of our physically based target environment. This expert oracle can be used to
provide feedback on predicted rollout trajectories and demonstrations; and
means we can gather new data and evolve the training dataset.

This form of Imitation learning proves particularly fruitful given the con-
figuration of our simulation state across timesteps are not independent and
identically distributed from one another. The output of one timestep (influ-
enced by an inference) will color the input to the next timestep. Therefore
any approximation error may lead us towards an unfamiliar input space, and
this error will accumulate as we strive to predict from only the familiar that
the network used for training.

Consequently, rather than anticipating all the data necessary for training,
it is easier for an ‘expert’ to demonstrate the target. By utilizing the oracle
to tame a possibly diverging input space, errors neither accumulate and the
agent avoids places the expert never visited.

To apply this approach, we start with (1) a DualGraph trained on initial
principled hair contact demonstrations. Then, we execute the following loop
until we converge. In each iteration, we (2) collect trajectories by solving
contacts via a DualGraph (which we obtained in the previous iteration) and
using to simulate the strands at each timestep. Then, for every inference, we

28

5.4. EVALUATION CHAPTER 5. DATA-DRIVEN HAIR CONTACT

(3) collect ground-truth output from the oracle (what would have he done in
the same configuration). Finally, we (1) train a new DualGraph policy using
this feedback.

5.4 Evaluation

The desired output of a hair contact pipeline is the efficient and accurate
modeling of strand-strand behavior. We will show that by using DualGraphs
we are able to reduce the cost of collision resolution in hair simulations with-
out introducing visual artifacts. Our approach will be the first to combine
strand collision resolution with data-driven methods, and stands to bene-
fit from the limitless data generation that our base simulation provides. If
successful, we will not only introduce an avenue for faster large scale hair sim-
ulations, but also pave the way for future data driven explorations relating
to hair, thin structures, and other physics-based phenomena.

Figure 5.3: Hairball. We aim to approximate grooms generated by state-
of-the-art hair simulations [24] at a fraction of the computational cost.

We are motivated by early successes in replacing contact solves with in-
ferred approximations. Through a mixture of DualGraph and careful data
aggregation, we have been able to simulate piles of strands coming into sta-
ble resting contact. We next seek to evaluate the robustness of our method
to larger scale examples. We aim to explore larger hairball examples (see
Fig. 5.3) and plan to show how a small but representative contact scenario
can inform a groom several orders of magnitude higher. Once a stable hair-
ball featuring thousands of strands can be demonstrated, we will aggregate
timing comparisons in order to submit our findings.

29

Chapter 6

Timeline

Our proposed methodology calls for utilizing datasets of synthetic data to
learn realistic behavioral models via graph algorithms. Simulated examples
more easily provide access to labeled and controlled behaviors and interac-
tions. Graph formulations then constrain the space of digital features by
simplifying efforts to operations on nodes and edges of the formulated graph.

We propose to validate our methodology by studying its implications
on additive manufacturing and computer vision objectives (Ch. 3), physi-
cal side channel attacks on modern GPUs of black-box neural architectures
(Ch. 4), and resolving bottlenecks in state-of-the-art strand-strand contact
simulations (Ch. 5). We aim to show that, compared to alternative methods,
graph-based handling of data driven models outperforms existing works in
terms of robustness and quality guarantees.

The timeline for completing the proposed dissertation is as follows:

□✓ LayerCodes - Fall 2019

□✓ Neural Snooping - Fall 2021

□ Thesis Proposal - Winter 2021/2022

□ Data-Driven Hair Contact Submission - Spring 2022

□ Thesis Writing - Spring 2022

□ Thesis Defense - Summer 2022

Thus I plan to defend my thesis by the end of this calendar school year.

30

Chapter 7

References

[1] Lejla Batina et al. “CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel”. In: Proceedings of
the 28th USENIX Security Symposium. USENIX Association. 2019.

[2] Peter W. Battaglia et al. “Relational inductive biases, deep learning,
and graph networks”. In: CoRR abs/1806.01261 (2018). arXiv: 1806.
01261. url: http://arxiv.org/abs/1806.01261.

[3] Berk Calli et al. “The YCB object and Model set: Towards com-
mon benchmarks for manipulation research”. In: Advanced Robotics
(ICAR), 2015 International Conference on. IEEE. 2015, pp. 510–517.

[4] Michael B Chang et al. “A Compositional Object-Based Approach
to Learning Physical Dynamics”. In: arXiv preprint arXiv:1612.00341
(2016).

[5] Boyuan Chen et al. “The Boombox: Visual Reconstruction from Acous-
tic Vibrations”. In: CoRR abs/2105.08052 (2021). arXiv: 2105.08052.
url: https://arxiv.org/abs/2105.08052.

[6] IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: Interna-
tional Business Machines Corporation 46.53 (2009), p. 157.

[7] Gilles Daviet. “Simple and Scalable Frictional Contacts for Thin Nodal
Objects”. In: ACM Trans. Graph. 39.4 (July 2020). issn: 0730-0301.
doi: 10.1145/3386569.3392439. url: https://doi.org/10.1145/
3386569.3392439.

31

CHAPTER 7. REFERENCES

[8] Ambra Demontis et al. “Why do adversarial attacks transfer? explain-
ing transferability of evasion and poisoning attacks”. In: 28th USENIX
Security Symposium Security 19). 2019, pp. 321–338.

[9] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[10] Li Deng. “The mnist database of handwritten digit images for machine
learning research”. In: IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142.

[11] Dave Epstein, Boyuan Chen, and Carl Vondrick. “Oops! Predicting
Unintentional Action in Video”. In: The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2020.

[12] Yun (Raymond) Fei et al. “A Multi-scale Model for Simulating Liquid-
fabric Interactions”. In: ACM Trans. Graph. 37.4 (Aug. 2018), 51:1–
51:16. issn: 0730-0301. doi: 10.1145/3197517.3201392. url: http:
//doi.acm.org/10.1145/3197517.3201392.

[13] Yun (Raymond) Fei et al. “A Multi-scale Model for Simulating Liquid-
hair Interactions”. In: ACM Trans. Graph. 36.4 (July 2017), 56:1–56:17.
issn: 0730-0301. doi: 10.1145/3072959.3073630. url: http://doi.
acm.org/10.1145/3072959.3073630.

[14] Corey Goldfeder and Peter K Allen. “Data-driven grasping”. In: Au-
tonomous Robots 31.1 (2011), pp. 1–20.

[15] Corey Goldfeder et al. “The columbia grasp database”. In: Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE. 2009, pp. 1710–1716.

[16] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. “Bidirec-
tional LSTM networks for improved phoneme classification and recog-
nition”. In: International Conference on Artificial Neural Networks.
Springer. 2005, pp. 799–804.

[17] Alex Graves et al. “Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks”. In: Proceed-
ings of the 23rd international conference on Machine learning. 2006,
pp. 369–376.

32

CHAPTER 7. REFERENCES

[18] J. Harris, J.L. Hirst, and M. Mossinghoff. Combinatorics and Graph
Theory. Undergraduate Texts in Mathematics. Springer New York,
2009. isbn: 9780387797113. url: https://books.google.com/books?
id=DfcQaZKUVLwC.

[19] K. He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[20] Xing Hu et al. “DeepSniffer: A DNN Model Extraction Framework
Based on Learning Architectural Hints”. In: Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 2020, pp. 385–399.

[21] Wenzel Jakob. Mitsuba renderer. http://mitsuba-renderer.org. 2010.

[22] K. Jo, M. Gupta, and S.K. Nayar. “DisCo: Display Camera Commu-
nication Using Rolling Shutter Sensors”. In: ACM Trans. on Graphics
(also Proc. of ACM SIGGRAPH) 35.5 (July 2016), 150:1–13.

[23] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big
data for grasp planning”. In: ICRA. IEEE. 2015, pp. 4304–4311.

[24] Danny M. Kaufman et al. “Adaptive Nonlinearity for Collisions in
Complex Rod Assemblies”. In: ACM Trans. Graph. 33.4 (July 2014).
issn: 0730-0301. doi: 10.1145/2601097.2601100. url: https://doi.
org/10.1145/2601097.2601100.

[25] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement learn-
ing in robotics: A survey”. In: The International Journal of Robotics
Research 32.11 (2013), pp. 1238–1274. doi: 10.1177/0278364913495721.
eprint: https://doi.org/10.1177/0278364913495721. url: https:
//doi.org/10.1177/0278364913495721.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[27] D. Li et al. “AirCode: Unobtrusive Physical Tags for Digital Fabrica-
tion”. In: ACM Symposium on User Interface Software and Technology
(UIST). Oct. 2017.

[28] Dingzeyu Li et al. “Acoustic Voxels: Computational Optimization of
Modular Acoustic Filters”. In: ACM Trans. Graph. 35.4 (2016).

33

CHAPTER 7. REFERENCES

[29] Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. Codimensional
Incremental Potential Contact. 2020. arXiv: 2012.04457 [cs.GR].

[30] Yunzhu Li et al. “Learning Particle Dynamics for Manipulating Rigid
Bodies, Deformable Objects, and Fluids”. In: International Conference
on Learning Representations. 2019. url: https://openreview.net/
forum?id=rJgbSn09Ym.

[31] Yunzhu Li et al. “Propagation Networks for Model-Based Control Un-
der Partial Observation”. In: ICRA. 2019.

[32] Marco Livesu et al. “From 3D models to 3D prints: an overview of the
processing pipeline”. In: Comput. Graph. Forum 36.2 (2017), pp. 537–
564.

[33] Aleksander Madry et al. “Towards Deep Learning Models Resistant to
Adversarial Attacks”. In: International Conference on Learning Rep-
resentations. 2018. url: https : / / openreview . net / forum ? id =

rJzIBfZAb.

[34] Henrique Teles Maia et al. Can one hear the shape of a neural network?:
Snooping the GPU via Magnetic Side Channel. 2021. arXiv: 2109 .
07395 [cs.CR].

[35] Henrique Teles Maia et al. “LayerCode: Optical Barcodes for 3D Printed
Shapes”. In: ACM Trans. Graph. 38.4 (July 2019), 112:1–112:14. issn:
0730-0301. doi: 10.1145/3306346.3322960. url: http://doi.acm.
org/10.1145/3306346.3322960.

[36] Nasser M Nasrabadi. “Pattern recognition and machine learning”. In:
Journal of electronic imaging 16.4 (2007), p. 049901.

[37] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial opti-
mization: algorithms and complexity. Courier Corporation, 1998.

[38] Tobias Pfaff et al. “Learning Mesh-Based Simulation with Graph Net-
works”. In: International Conference on Learning Representations. 2021.
url: https://openreview.net/forum?id=roNqYL0_XP.

[39] Ben Redwood, Filemon Schffer, and Brian Garret. “The 3D Printing
Handbook: Technologies, design and applications”. In: (2017).

[40] Joseph M Romano et al. “Human-inspired robotic grasp control with
tactile sensing”. In: IEEE Transactions on Robotics 27.6 (2011), pp. 1067–
1079.

34

CHAPTER 7. REFERENCES

[41] Alvaro Sanchez-Gonzalez et al. “Graph Networks as Learnable Physics
Engines for Inference and Control”. In: Proceedings of the 35th In-
ternational Conference on Machine Learning. Ed. by Jennifer Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, July 2018, pp. 4470–
4479. url: http://proceedings.mlr.press/v80/sanchez-gonzalez18a.
html.

[42] Alvaro Sanchez-Gonzalez et al. “Learning to Simulate Complex Physics
with Graph Networks”. In: International Conference on Machine Learn-
ing. 2020.

[43] Franco Scarselli et al. “The Graph Neural Network Model”. In: Trans.
Neur. Netw. 20.1 (Jan. 2009), pp. 61–80. issn: 1045-9227. doi: 10.
1109/TNN.2008.2005605. url: https://doi.org/10.1109/TNN.
2008.2005605.

[44] Adriana Schulz et al. “Interactive Design Space Exploration and Op-
timization for CAD Models”. In: ACM Transactions on Graphics 36.4
(July 2017).

[45] Adriana Schulz et al. “Interactive Exploration of Design Trade-Offs”.
In: ACM Trans. Graph. 37.4 (July 2018). issn: 0730-0301. doi: 10.
1145/3197517.3201385. url: https://doi.org/10.1145/3197517.
3201385.

[46] Adriana Schulz et al. “Interactive robogami: An end-to-end system
for design of robots with ground locomotion”. In: The International
Journal of Robotics Research 36.10 (2017), pp. 1131–1147.

[47] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: CoRR abs/1409.1556
(2014). url: http://arxiv.org/abs/1409.1556.

[48] Daniel Sims et al. Stretchcam: Zooming Using Thin, Elastic Optics.
Tech. rep. Dec. 2017.

[49] Peter Teufl, Udo Payer, and Guenter Lackner. “From NLP (Natural
Language Processing) to MLP (Machine Language Processing)”. In:
Computer Network Security. Ed. by Igor Kotenko and Victor Skormin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 256–269. isbn:
978-3-642-14706-7.

35

CHAPTER 7. REFERENCES

[50] Jacob Varley et al. “Shape Completion Enabled Robotic Grasping”. In:
Intelligent Robots and Systems (IROS), IEEE/RSJ 2017 International
Conference on. extended version preprint at arXiv:1609.08546.

[51] Hongyi Xu et al. “Interactive Material Design Using Model Reduction”.
In: ACM Trans. Graph. 34.2 (Mar. 2015). issn: 0730-0301. doi: 10.
1145/2699648. url: https://doi.org/10.1145/2699648.

[52] Xiaojun Xu et al. “Neural Network-Based Graph Embedding for Cross-
Platform Binary Code Similarity Detection”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’17. Dallas, Texas, USA: Association for Computing
Machinery, 2017, pp. 363–376. isbn: 9781450349468. doi: 10.1145/
3133956 . 3134018. url: https : / / doi . org / 10 . 1145 / 3133956 .
3134018.

[53] Qingnan Zhou and Alec Jacobson. “Thingi10K: A Dataset of 10,000
3D-Printing Models”. In: arXiv preprint arXiv:1605.04797 (2016).

36

Appendix A
Supplemental Findings

Figure A.1: Complex shapes. A peek into the diversity of tested shapes
within our database. Each view presented is correctly decoded by our graph-
based algorithm, including those with bumpy, shell, thin, curvy, and other
challenging properties.

37

APPENDIX A. SUPPLEMENTAL FINDINGS

C
la

ss
ifi

ca
tio

n
te

st
 a

cc
ur

ac
y

0.7

0.732

0.765

0.798

0.83

A B C D E

0.771

0.8080.8060.811
0.822

0 0.05 0.11 0.28 0.11
Normalized
Levenshtein distance

Figure A.2: Each model’s classification accuracy drops as its Levenshtein
distance from the original model (model A: AlexNet) increases.

Table A.1: DNN estimation accuracies. Using the 1804 convolutional
layers in our test dataset, we measure the accuracies of our DNN models for
estimating the convolutional layers’ hyperparameters. Here, we break the
accuracies down into the accuracies for individual hyperparameters.

Kernel Stride Padding Image-in Image-out
Precision 0.971 0.976 0.965 0.968 0.965

Recall 0.969 0.975 0.964 0.969 0.968
F1 Score 0.969 0.975 0.962 0.967 0.965

Transfer Attack

An adversarial transfer attack attempts to design an input that tricks an
unknown target model. The name transfer alludes to the method of attack:
The attacker builds a surrogate, an approximation (informed guess) of the
unknown target model, and seeks out an input that tricks the surrogate.
The attacker hopes that the exploit “transfers” to the actual target, i.e.,
that an input that tricks the surrogate also tricks the target. The likelihood
of a successful attack increases as the surrogate better approximates the
target. In a black-box setting, finding an effective surrogate is very hard [8].
Therefore, the attacker wishes to design a more informed surrogate. One
avenue toward this is to design surrogates with topology and parameters
similar to the target.

38

APPENDIX A. SUPPLEMENTAL FINDINGS

CIFAR-10 Dataset. Here we test on six networks found in the wild, rang-
ing from VGGs to AlexNet to ResNets, as listed on the header row of A.2.
The table shows the percent of successful transfer attacks over 5, 000 attempts
on the CIFAR-10 dataset.

We consider each target architecture on each of four GPUs in turn (top
four rows of A.2). We consider each such architecture-GPU combination,
in turn, as black-box target. Using the side channel exploit, we reconstruct
the target’s structure to obtain a surrogate architecture, which we train on
CIFAR-10 to obtain a surrogate model. We craft inputs that trick the surro-
gate, and evaluate whether those inputs also trick the target. Transfer attack
success is defined as the percent of generated inputs (based on the surrogate)
that correctly cause the trained target model to mislabel an input. All ad-
versarial inputs are generated via Projected Gradient Descent [33], using an
ϵ of 0.031 and an α of 0.003 for all results. The success rate of the transfer
attacks is summarized in the upper four rows of A.2.

To gauge the success rates of the “side channel surrogates,” we compare
them against “white-box surrogates.” We build six white-box surrogates,
corresponding to the six known target architectures; these white-box surro-
gates differ only in weights, as the surrogates are trained from scratch on
CIFAR-10. The idealized white-box surrogates serve as a benchmark for
effective surrogates; refer to the success rates in the bottom six rows of A.2.

Remarkably, the “side-channel surrogates” offer comparable success rates
to “white-box surrogates.” The relative success of side-channel surrogates
becomes more pronounced for deeper networks (ResNets), where it appears
that architecture dominates sensitivity to weight values. When the number of
layers is small, as in VGG-11 and AlexNet architectures, the margin for error
decreases, and more importance is given to the weights of the target. How-
ever, even in these cases where attack performance drops, the side-channel
surrogates closely match the success rate of their white-box counterparts,
displayed in the lower rows. In other words, the side-channel reconstruction
effectively turns a black-box into a white-box attack.

MNIST Dataset. Similar to our analysis of CIFAR-10 transfer attacks,
we also conduct transfer attack experiments on the MNIST dataset. We
download four networks online, which are not commonly used. Two of them
are convolutional networks (referred as CNN1 and CNN2), and the other two
are fully connected networks (referred as DNN1 and DNN2). None of these

39

APPENDIX A. SUPPLEMENTAL FINDINGS

Table A.2: Transfer attack results on CIFAR-10.

Target Model
ResNet-18 ResNet-34 ResNet-101 VGG-11 VGG-16 AlexNet

S
ou

rc
e
M
o
d
el

GTX-960 98.56 92.51 91.20 63.41 72.57 58.90
GTX-1080 97.88 90.86 86.24 64.69 55.19 56.83
Titan X 98.32 93.45 84.47 61.89 77.36 68.41
Titan V 98.48 93.65 91.27 64.39 72.77 60.17
ResNet-18 97.70 90.72 80.27 47.98 86.64 30.56
ResNet-34 97.21 92.46 82.30 51.42 85.60 32.34
ResNet-101 92.53 86.98 92.95 53.98 83.04 30.55
VGG-11 65.86 57.82 57.52 60.24 65.50 39.95
VGG-16 74.00 61.54 54.23 41.60 74.29 29.57
AlexNet 10.11 9.59 10.19 11.60 10.42 62.70

Table A.3: Transfer attack results on MNIST.

Target Model
CNN1 CNN2 DNN1 DNN2

S
ou

rc
e
M
o
d
el GTX-1080 .802 .878 .999 .874

CNN1 .858 .226 .785 .476
CNN2 .395 .884 .354 .354
DNN1 .768 .239 .999 .803
DNN2 .703 .219 .975 .860

networks appear in the training dataset. We treat these networks as black-
box targets, reconstruct a side-channel surrogate for each, and attack the
four targets; results are shown in A.3. As baselines, we also train white-box
surrogates with the exact architecture of the four target models.

All four of our extracted networks, visible in the top row of A.3 achieve
high transfer attack scores against our candidate targets. These high scores
suggest a close approximation of the target models by our reconstructed
networks. The similarity between our extracted network’s transfer attack
results and the results achieved by the matching source model across the
bottom four rows also indicates a strong correspondence in the achieved
architectures. We find that even across the MNIST dataset we are able to
generate a model that behaves akin to a white-box transfer attack.

40

